Испытание отрицательным давлением

1. Введение

Одним из главных параметров вентиляционной системы является давление. Вентилятор, всасывающий воздух из атмосферы и нагнетающий его в объем, создает определенную разность давлений междуатмосферой и этим объемом. В данной публикации мы говорим просто «давление», если оно соотнесено со стандартным давлением.

В вентиляционных системах могут использоваться и положительные, и отрицательное давление. Это зависит от того, извлекается воздух из объема или нагнетается в объем.

https://www.youtube.com/watch?v=https:accounts.google.comServiceLogin

Вентилятор, забирающий снаружи свежий воздух, будет сначала создавать некоторое отрицательное давление в воздуховоде между воздухозабором и вентилятором. Это отрицательное давление вызывает поток воздуха с улицы (где давление является более высоким) в воздухозабор. В зависимости от сопротивления воздухозабора и мощности вентилятора, это давление может достичь значений, опасных для наших изделий.

Суть эффекта[ | ]

Согласно квантовой теории поля, физический вакуум представляет собой не абсолютную пустоту. В нём постоянно рождаются и исчезают па́ры виртуальных частиц и античастиц — происходят постоянные колебания (флуктуации) связанных с этими частицами полей. В частности, происходят колебания связанного с фотонамиэлектромагнитного поля.

В вакууме рождаются и исчезают виртуальные фотоны, соответствующие всем длинам волн электромагнитного спектра. Однако в пространстве между близко расположенными зеркальными поверхностями ситуация меняется. На определённых резонансных длинах (целое или полуцелое число раз укладывающихся между поверхностями) электромагнитные волны усиливаются.

На всех остальных длинах, которых больше, напротив, эти волны подавляются (то есть подавляется рождение соответствующих виртуальных фотонов). Происходит это вследствие того, что в пространстве между пластинами могут существовать только стоячие волны, амплитуда которых на пластинах равна нулю. В результате давление виртуальных фотонов изнутри на две поверхности оказывается меньше, чем давление на них извне, где рождение фотонов ничем не ограничено.

Явление можно образно описать как «отрицательное давление», когда вакуум лишён не только обычных, но и части виртуальных частиц, то есть «откачали всё и ещё чуть-чуть». С этим явлением связан также эффект Шарнхорста.

Аналогия[ | ]

Испытание отрицательным давлением

Явление, схожее с эффектом Казимира, наблюдалось ещё в XVIII веке французскими моряками. Когда два корабля, раскачивающиеся из стороны в сторону в условиях сильного волнения, но слабого ветра, оказывались на расстоянии примерно 40 метров и менее, то в результате интерференции волн в пространстве между кораблями прекращалось волнение.

Спокойное море между кораблями создавало меньшее давление, чем волнующееся с внешних бортов кораблей. В результате возникала сила, стремящаяся столкнуть корабли бортами. В качестве контрмеры руководство по мореплаванию начала 1800-х годов рекомендовало обоим кораблям послать по шлюпке с 10—20 моряками, чтобы растолкать корабли. За счёт такого эффекта (в числе прочих) сегодня в океане образуются мусорные острова.

Также эффект напоминает кинетическую теорию гравитации Лесажа, заключающуюся в сталкивании тел друг с другом под давлением неких гипотетических частиц.

2. Разница между положительным и отрицательным давлением

Очень важно иметь ввиду, что положительное и отрицательное давление оказывают на воздуховоды разное влияние. Положительное давление в объеме создает силы, направленные наружу. Эти силы возникают за счет ударов молекул о стенки объема.

Когда в воздушный шар накачивается воздух, его объем увеличивается. Вследствие увеличения напряжений в стенках возникает обратная сила, достигается равновесие и растяжение прекращается. Отрицательное давление внутри объема приводит фактически к тому же самому результату. Возникают усилия, но теперь направленные внутрь объема.

Поведение объема зависит от его размеров и структуры стенок. Известно, что большие объемы более чувствительны к давлению, чем маленькие. Это объясняется тем фактом, что давление равно силе, приложенной к определенной площади. Давление в 1000 Па создает силу, соответствующую действию массы 100 кг. на площадь 1 м2. Увеличение объема (увеличение диаметра) приводит к увеличению полной силы, действующей на поверхность стенки.

Не требуется объяснять, что гибкий воздуховод с большим диаметром будет менее устойчив к отрицательным давлениям.Существуют два типа деформации гибких воздуховодов отрицательным давлением. Воздуховод может быть либо смят, либо подвергнут так называемому «эффекту домино».

Ниже будут объяснены оба эти типа деформации воздуховодов.

Современные исследования эффекта Казимира[ | ]

Сила притяжения, действующая на единицу площади Fc/A{displaystyle F_{c}/A} для двух параллельных идеальных зеркальных поверхностей, находящихся в абсолютном вакууме, составляет

FcA=ℏcπ2240d4{displaystyle {F_{c} over A}={hbar cpi ^{2} over 240d^{4}}},
ℏ{displaystyle hbar } — приведённая постоянная Планка,
c{displaystyle c} — скорость света в вакууме.
d{displaystyle d} — расстояние между поверхностями.

Отсюда видно, что сила Казимира крайне мала. Расстояние, на котором она начинает быть сколько-нибудь заметной, составляет порядка нескольких микрометров. Однако, будучи обратно пропорциональной 4-й степени расстояния, она очень быстро растёт с уменьшением последнего. На расстояниях порядка 10 нм — сотни размеров типичного атома — давление, создаваемое эффектом Казимира, оказывается сравнимым с атмосферным.

В случае более сложной геометрии (например, взаимодействия сферы и плоскости или взаимодействия более сложных объектов) численное значение и знак коэффициента меняется[3], таким образом сила Казимира может быть как силой притяжения, так и силой отталкивания.

Несмотря на то, что в формуле для силы Казимира отсутствует постоянная тонкой структурыα{displaystyle alpha } — основная характеристика электромагнитного взаимодействия, — этот эффект, тем не менее, имеет электромагнитное происхождение. Как показано в заметке[4], при учёте конечной проводимости пластин появляется зависимость от α{displaystyle alpha }, а стандартное выражение для силы появляется в предельном случае α≫mc/4πℏnd4{displaystyle alpha gg mc/4pi hbar nd^{4}}, где n{displaystyle n} — плотность электронов в пластинке.

Графен[ | ]

Эффект Казимира определяет взаимодействие любых электрически нейтральных объектов на малых расстояниях (порядка микрона и меньше). В случае реалистичных материалов величина взаимодействия обусловливается объёмными свойствами материала (диэлектрическая проницаемость в случае диэлектриков, проводимость для металлов).

История открытия[ | ]

Хендрик Казимир работал в Philips Research Laboratories в Нидерландах, занимаясь изучением коллоидных растворов — вязких веществ, имеющих в своём составе частички микронных размеров. Один из его коллег, Тео Овербек (Theo Overbeek), обнаружил, что поведение коллоидных растворов не вполне согласуется с существующей теорией, и попросил Казимира исследовать эту проблему.

Печать

Вскоре Казимир пришёл к выводу, что отклонения от предсказываемого теорией поведения может быть объяснено, если учитывать влияние флуктуаций вакуума на межмолекулярные взаимодействия. Это и натолкнуло его на вопрос, какое воздействие могут оказать флуктуации вакуума на две параллельные зеркальные поверхности, и привело к знаменитому предсказанию о существовании между последними притягивающей силы.

4. Эффект домино

В зависимости от конструкции гибкого воздуховода могут наблюдаться несколько эффектов. На нескольких последующих чертежах будет показан эффект, наиболее существенный для гибких воздуховодов.

Чертеж 1

Таково нормально положение проволочной спирали в стенке гибкого воздуховода, если смотретьна него сбоку.

Два соседних витка проволоки соединены слоистым материалом воздуховода. В зависимости от характера этого материала расстояние между витками проволоки может быть различным. Проволока предотвращает образование на воздуховоде вмятин и т.п. Однако слоистый материал также придает воздуховоду жесткость или мягкость.

{displaystyle F_{c}/A}

Выше уже было сказано, что силы, создаваемые отрицательным давлением в воздуховоде, направлены внутрь воздуховода. Обычно их направление перпендикулярно к стенке воздуховода. При этом проволока, так же как и слоистый материал, должна выдерживать эти усилия.

На чертеже 2 усилия показаны стрелками. При этом максимальное допустимое усилие определяется сопротивлением разрыву материала стенки.

Чертеж 2

Оно будет примерно таким же, как максимальное положительное давление, которое показано стрелками, направленными в противоположном направлении (чертеж 3).

Чертеж 3

К сожалению, дело обстоит не совсем так. Фактически витки будут складываться, как ряд костяшек домино (см. чертеж 4).

При таком движении объем внутри воздуховода уменьшается под действием силы наружного давления.

Чертеж 4

Экспериментальное обнаружение[ | ]

Когда в 1948 году Казимир сделал своё предсказание, несовершенство существовавших технологий и крайняя слабость самого́ эффекта делали его экспериментальную проверку чрезвычайно трудной задачей. Один из первых экспериментов провёл в 1958 годуМаркус Спаарней (Marcus Spaarnay) из центра Philips в Эйндховене.

В 2012 году группа исследователей из Флоридского университета сконструировала первую микросхему для измерения силы Казимира между электродом и кремниевой пластиной толщиной 1,42 нм при комнатной температуре. Устройство работает в автоматическом режиме и снабжено приводом, который регулирует расстояние между пластинами от 1,92 нм до 260 нм, соблюдая параллельность.

В 2015 году удалось экспериментально обнаружить и измерить крутящий момент Казимира[11].

5. Смятие

Данный эффект наблюдается, если проволочная спираль воздуховода менее прочна, чем конструкция стенок. Это означает, что конструкция стенок лучше сопротивляется эффекту домино, чем проволочная спираль смятию. Деформации, возникающие при смятии воздуховода, являются такими же, как если положить на воздуховод тяжелый предмет. Воздуховод просто сплющивается. Для этого все витки спирали необходимо превратить в овал или даже в плоскость.

  • Проволока сгибается в двух местах каждого витка. Нетрудно понять, что сопротивление такому смятию увеличивается, если увеличивается толщина проволки или уменьшается расстояние между витками проволки. Это объясняет, почему воздуховод пылесоса имеет толстую проволоку и очень маленький шагвитков.
  • Очень важно иметь ввиду, что устойчивость гибкого воздуховода очень сильно падает при увеличении диаметра. Силы, действующие на поверхность воздуховода большего диаметра, создают большие напряжения в проволочной спирали, и поэтому воздуховод легче сминается. Если при очень большом диаметре, например 710 мм., использовать слишком тонкую проволоку, воздуховод будет сминаться почти что под действием собственного веса. Очень малое давление может вызвать полное сплющивание.
  • Пользователь почти ничего не может сделать для увеличения сопротивления смятию. Когда воздуховод достигает предела своих возможностей, начинает деформироваться и превращается в овал, пользователь не в состоянии ничего предпринять, кроме уменьшения отрицательного давления или применения лучшего воздуховода.

6. Заключение

Мы увидели, что отрицательное давление является более опасным для воздуховода, чем положительное. В зависимости от диаметра и конструкции стенок воздуховода будут наблюдаться смятие или эффект домино. Если первым возникает эффект домино, пользователь может принять некоторые меры, чтобы существенно улучшить поведение воздуховода за счет надлежащего монтажа. Но как только возникает эффект смятия, можно быть уверенным, что достигнут предел возможностей данного воздуховода.

Оценить поведение гибкого воздуховода при отрицательных давлениях можно с помощью лабораторных испытаний, однако результаты всегда будут относиться только к испытательной ситуациии к использовавшейся в данных конкретных испытаниях форме воздуховода. Деформация воздуховода во время монтажа из-за небрежного обращения, а также способ монтажа могут оказать настолько сильное влияние, что полученные данные не будут корректными.

Применение[ | ]

https://www.youtube.com/watch?v=upload

К 2018 году российско-германской группой физиков (В. М. Мостепаненко, Г. Л. Климчицкая, В. М. Петров и руководимая Тео Чуди группа из Дармштадта) разработана теоретическая и экспериментальная схема миниатюрного квантового оптического прерывателя[en] для лазерных лучей на основе эффекта Казимира, в котором сила Казимира уравновешивается давлением света[12][13].

В культуре[ | ]

Довольно подробно эффект Казимира описывается в научно-фантастической книге Артура Кларка «Свет иных дней», где он используется для создания двух парных червоточин в пространстве-времени, и передачи через них информации.

Примечания[ | ]

  1. Бараш Ю. С., Гинзбург В. Л.Электромагнитные флуктуации в веществе и молекулярные (ван-дер-ваальсовы) силы между телами // УФН, т. 116, с. 5-40 (1975)
  2. Casimir H. B. G.On the attraction between two perfectly conducting plates (англ.) // Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen : journal. — 1948. — Vol. 51. — P. 793—795.
  3. Физическая энциклопедия, т. 5. Стробоскопические приборы — Яркость / Гл. ред. А. М. Прохоров. Ред. кол.: А. М. Балдин, А. М. Бонч-Бруевич и др. — М.: Большая Российская Энциклопедия, 1994, 1998. — 760 с. — ISBN 5-85270-101-7, стр. 644
  4. R. Jaffe — The Casimir Effect and the Quantum Vacuum (англ.)
  5. Bordag M., Fialkovsky I. V., Gitman D. M., Vassilevich D. V.Casimir interaction between a perfect conductor and graphene described by the Dirac model (англ.) // Physical Review B : journal. — 2009. — Vol. 80. — P. 245406. — DOI:10.1103/PhysRevB.80.245406.
  6. Fialkovsky I. V., Marachevskiy V.N., Vassilevich D. V.Finite temperature Casimir effect for graphene (неопр.). — 2011.
  7. Физики впервые зарегистрировали динамический эффект Казимира
  8. Статья о динамическом эффекте Казимира в журнале Nature
  9. Первый чип для измерения силы Казимира
  10. Engineers Unveil First Casimir Chip That Exploits The Vacuum Energy | MIT Technology Review
  11. David A. T. Somers, Joseph L. Garrett, Kevin J. Palm {amp}amp; Jeremy N. Munday 19 Dec. 2018 Measurement of the Casimir torque // Nature, volume 564, pages 386—389 (2018)
  12. G. L. Klimchitskaya, V. M. Mostepanenko, V. M. Petrov, T. Tschudi. Optical Chopper Driven by the Casimir Force (неопр.) // Phys. Rev. Applied. — 2018. — Т. 10, № 1. — С. 014010. — DOI:10.1103/PhysRevApplied.10.014010.
  13. Физик КФУ совместно с группой ученых разработал новое устройство для оптических систем связи, Медиапортал КФУ (26 февраля 2019).

Ссылки[ | ]

Поделиться:
Нет комментариев

Добавить комментарий

Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.

Adblock detector